Shape sensing of optical fiber Bragg gratings based on deep learning

Author:

Manavi Roodsari SamanehORCID,Huck-Horvath Antal,Freund SaraORCID,Zam AzharORCID,Rauter GeorgORCID,Schade Wolfgang,Cattin Philippe CORCID

Abstract

Abstract Continuum robots in robot-assisted minimally invasive surgeries provide adequate access to target anatomies that are not directly reachable through small incisions. Achieving precise and reliable shape estimation of such snake-like manipulators necessitates an accurate navigation system, that requires no line-of-sight and is immune to electromagnetic noise. Fiber Bragg grating (FBG) shape sensing, particularly eccentric FBG (eFBG), is a promising and cost-effective solution for this task. However, in eFBG sensors, the spectral intensity of the Bragg wavelengths that carries the strain information can be affected by undesired bending-induced phenomena, making standard characterization techniques less suitable for these sensors. We showed in our previous work that a deep learning model has the potential to extract the strain information from the eFBG sensor’s spectrum and accurately predict its shape. In this paper, we conducted a more thorough investigation to find a suitable architectural design of the deep learning model to further increase shape prediction accuracy. We used the Hyperband algorithm to search for optimal hyperparameters in two steps. First, we limited the search space to layer settings of the network, from which, the best-performing configuration was selected. Then, we modified the search space for tuning the training and loss calculation hyperparameters. We also analyzed various data transformations on the network’s input and output variables, as data rescaling can directly influence the model’s performance. Additionally, we performed discriminative training using the Siamese network architecture that employs two convolutional neural networks (CNN) with identical parameters to learn similarity metrics between the spectra of similar target values. The best-performing network architecture among all evaluated configurations can predict the shape of a 30 cm long sensor with a median tip error of 3.11 mm in a curvature range of 1.4 m−1 to 35.3 m−1.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference49 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3