Regression transients modeling of solid rocket motor burning surfaces with physics-guided neural network

Author:

Sun XueQin,Li Yu,Li YiHong,Wang SuKai,Li Xuan,Lu Ming,Chen PingORCID

Abstract

Abstract Monitoring the burning surface regression in ground static ignition tests is crucial for predicting the internal ballistic performance of solid rocket motors (SRMs). A previously proposed ultra-sparse computed tomography imaging method provides a possibility for real-time monitoring. However, sample shortages of SRMs highlights the need for monitoring accuracy, especially given the high cost associated with the design and development of SRM systems. Therefore, constructing datasets via regression simulations to compensate for SRM sample shortages is critical. To address this issue, we recommend adopting the level-set method to dynamically track the burning surface by solving partial differential equations (PDEs). The computational cost of numerical solution is prohibitive for scientific applications involving large-scale spatiotemporal domains. The physics-informed neural network (PINN) and neural operator have been used to accelerate the solution of PDE, showing satisfactory prediction performance and high computational efficiency. We designed a physics-guided network, named LS-PhyNet, that couples the potential physical mechanisms of burning surface regression into the deep learning framework. The proposed method is capable of encoding well-established traditional numerical discretization methods into the network architecture to leverage prior knowledge of underlying physics, thus providing the model with enhanced expressive power and interpretability. Experimental results prove that LS-PhyNet can better reproduce the burning surfaces obtained by numerical solution with only small data regimes, providing a new paradigm for real-time monitoring of burning surface regression transients during static ignition tests.

Funder

State Key Laboratory of Dynamic Measurement Technology, North University of China

National Nature Science Foundation of China

Provincial Natural Science Foundation of Shanxi

Publisher

IOP Publishing

Reference39 articles.

1. Design optimization of solid rocket propulsion: a survey of recent advancements;Mahjub;J. Spacecr. Rockets,2020

2. An automatic ultrasonic thickness measurement method for composite inhibitor coated on solid propellant;Li,2022

3. An ultra-sparse view CT imaging method based on X-ray2CTNet;Sun;IEEE Trans. Comput. Imaging,2022

4. Internal ballistic modeling of a solid rocket motor by analytical burnback analysis;Tola;J. Spacecr. Rockets,2019

5. Numerical evaluation of the effects of inclusions on solid rocket motor performance;Ponti;AIAA J.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3