Evaluating cell growth and hypoxic regions of 3D spheroids via a machine learning approach

Author:

Yoo JaekakORCID,Choi Jae Won,Kim Eunha,Park Eun-Jung,Baek Ahruem,Kim Jaeseok,Jeong Mun SeokORCID,Cho YoungwooORCID,Lee Tae Geol,Heo Min BeomORCID

Abstract

Abstract This study investigated the applicability of the area of spheroids and hypoxic regions for efficient evaluation of drug efficacy using machine learning (ML). We initially developed a high-throughput detection method to obtain the area of spheroids and hypoxic regions that can handle over 10 000 images per hour with an error rate of 2%–3%. The ML models were trained using cell growth of six cell lines (i.e. HepG2, A549, Hep3B, BEAS-2B, HT-29, and HCT116) and hypoxic region variations of two cell lines (i.e. HepG2 and BEAS-2B); our model can predict the area of spheroids and hypoxic region of certain growth date with high precision. To demonstrate the applicability, HepG2 spheroids were treated with sorafenib, and the efficacy of the drug was evaluated through a comparison of differences in areas of cell size and hypoxic regions with the predicted results. Furthermore, our ML approach has been shown to be applicable to provide the model-driven evaluative criterion for toxicity and drug efficacy using spheroids.

Funder

Ministry of Science and ICT, South Korea

National Supercomputing Center, Korea Institute of Science and Technology Information

Korea Research Institute of Standards and Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3