GA-based weighted ensemble learning for multi-label aerial image classification using convolutional neural networks and vision transformers

Author:

Tseng Ming-HsengORCID

Abstract

Abstract Multi-label classification (MLC) of aerial images is a crucial task in remote sensing image analysis. Traditional image classification methods have limitations in image feature extraction, leading to an increasing use of deep learning models, such as convolutional neural networks (CNN) and vision transformers (ViT). However, the standalone use of these models may have limitations when dealing with MLC. To enhance the generalization performance of MLC of aerial images, this paper combines two CNN and two ViT models, comparing four single deep learning models, a manually weighted ensemble learning method, and a GA-based weighted ensemble method. The experimental results using two public multi-label aerial image datasets show that the classification performance of ViT models is better than CNN models, the traditional weighted ensemble learning model performs better than a single deep learning model, and the GA-based weighted ensemble method performs better than the manually weighted ensemble learning method. The GA-based weighted ensemble method proposed in this study can achieve better MLC performance of aerial images than previous results.

Funder

National Science and Technology Council, Taiwan, R.O.C.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3