Abstract
Abstract
We examine the zero-temperature Metropolis Monte Carlo (MC) algorithm as a tool for training a neural network by minimizing a loss function. We find that, as expected on theoretical grounds and shown empirically by other authors, Metropolis MC can train a neural net with an accuracy comparable to that of gradient descent (GD), if not necessarily as quickly. The Metropolis algorithm does not fail automatically when the number of parameters of a neural network is large. It can fail when a neural network’s structure or neuron activations are strongly heterogenous, and we introduce an adaptive Monte Carlo algorithm (aMC) to overcome these limitations. The intrinsic stochasticity and numerical stability of the MC method allow aMC to train deep neural networks and recurrent neural networks in which the gradient is too small or too large to allow training by GD. MC methods offer a complement to gradient-based methods for training neural networks, allowing access to a distinct set of network architectures and principles.
Funder
Lawrence Berkeley National Laboratory
National Energy Research Scientific Computing Center
Basic Energy Sciences
Office of Science User Facility
FWO
U.S. Department of Energy
National Science and Engineering Council of Canada. C.C.
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献