A biology-informed similarity metric for simulated patches of human cell membrane

Author:

Bhatia HarshORCID,Thiagarajan Jayaraman J,Anirudh RushilORCID,Jayram T S,Oppelstrup TomasORCID,Ingólfsson Helgi IORCID,Lightstone Felice C,Bremer Peer-TimoORCID

Abstract

Abstract Complex scientific inquiries rely increasingly upon large and autonomous multiscale simulation campaigns, which fundamentally require similarity metrics to quantify ‘sufficient’ changes among data and/or configurations. However, subject matter experts are often unable to articulate similarity precisely or in terms of well-formulated definitions, especially when new hypotheses are to be explored, making it challenging to design a meaningful metric. Furthermore, the key to practical usefulness of such metrics to enable autonomous simulations lies in in situ inference, which requires generalization to possibly substantial distributional shifts in unseen, future data. Here, we address these challenges in a cancer biology application and develop a meaningful similarity metric for ‘patches’—regions of simulated human cell membrane that express interactions between certain proteins of interest and relevant lipids. In the absence of well-defined conditions for similarity, we leverage several biology-informed notions about data and the underlying simulations to impose inductive biases on our metric learning framework, resulting in a suitable similarity metric that also generalizes well to significant distributional shifts encountered during the deployment. We combine these intuitions to organize the learned embedding space in a multiscale manner, which makes the metric robust to incomplete and even contradictory intuitions. Our approach delivers a metric that not only performs well on the conditions used for its development and other relevant criteria, but also learns key spatiotemporal relationships without ever being exposed to any such information during training.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference53 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3