Extending the extended dynamic mode decomposition with latent observables: the latent EDMD framework

Author:

Ouala SaidORCID,Chapron Bertrand,Collard Fabrice,Gaultier Lucile,Fablet Ronan

Abstract

Abstract Bernard O Koopman proposed an alternative view of dynamical systems based on linear operator theory, in which the time evolution of a dynamical system is analogous to the linear propagation of an infinite-dimensional vector of observables. In the last few years, several works have shown that finite-dimensional approximations of this operator can be extremely useful for several applications, such as prediction, control, and data assimilation. In particular, a Koopman representation of a dynamical system with a finite number of dimensions will avoid all the problems caused by nonlinearity in classical state-space models. In this work, the identification of finite-dimensional approximations of the Koopman operator and its associated observables is expressed through the inversion of an unknown augmented linear dynamical system. The proposed framework can be regarded as an extended dynamical mode decomposition that uses a collection of latent observables. The use of a latent dictionary applies to a large class of dynamical regimes, and it provides new means for deriving appropriate finite-dimensional linear approximations to high-dimensional nonlinear systems.

Funder

Labex Cominlabs

Agence Nationale de la Recherche

Centre National d’Etudes Spatiales

GENCI-IDRIS

ERC Synergy project

Microsoft

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference40 articles.

1. Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator;Arbabi;SIAM J. Appl. Dyn. Syst.,2017

2. Forecasting sequential data using consistent Koopman autoencoders;Azencot,2020

3. Physics-informed dynamic mode decomposition;Baddoo;Proc. R. Soc. A,2023

4. Chaos as an intermittently forced linear system;Brunton;Nat. Commun.,2017

5. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control;Brunton;PLoS One,2016a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3