Deep learning symmetries and their Lie groups, algebras, and subalgebras from first principles

Author:

Forestano Roy TORCID,Matchev Konstantin TORCID,Matcheva KatiaORCID,Roman AlexanderORCID,Unlu Eyup BORCID,Verner SarunasORCID

Abstract

AbstractWe design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset. We use fully connected neural networks to model the symmetry transformations and the corresponding generators. The constructed loss functions ensure that the applied transformations are symmetries and the corresponding set of generators forms a closed (sub)algebra. Our procedure is validated with several examples illustrating different types of conserved quantities preserved by symmetry. In the process of deriving the full set of symmetries, we analyze the complete subgroup structure of the rotation groupsSO(2),SO(3), andSO(4), and of the Lorentz groupSO(1,3). Other examples include squeeze mapping, piecewise discontinuous labels, andSO(10), demonstrating that our method is completely general, with many possible applications in physics and data science. Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference57 articles.

1. The role of symmetry in fundamental physics;Gross;Proc. Natl Acad. Sci.,1996

2. Lectures on Non-supersymmetric BSM Models;Csáki,2018

3. Machine and deep learning applications in particle physics;Bourilkov;Int. J. Mod. Phys. A,2020

4. Modern machine learning for LHC physicists;Plehn,2022

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3