Abstract
Abstract
With rapid progress across platforms for quantum systems, the problem of many-body quantum state reconstruction for noisy quantum states becomes an important challenge. There has been a growing interest in approaching the problem of quantum state reconstruction using generative neural network models. Here we propose the ‘attention-based quantum tomography’ (AQT), a quantum state reconstruction using an attention mechanism-based generative network that learns the mixed state density matrix of a noisy quantum state. AQT is based on the model proposed in ‘Attention is all you need’ by Vaswani et al (2017 NIPS) that is designed to learn long-range correlations in natural language sentences and thereby outperform previous natural language processing (NLP) models. We demonstrate not only that AQT outperforms earlier neural-network-based quantum state reconstruction on identical tasks but that AQT can accurately reconstruct the density matrix associated with a noisy quantum state experimentally realized in an IBMQ quantum computer. We speculate the success of the AQT stems from its ability to model quantum entanglement across the entire quantum system much as the attention model for NLP captures the correlations among words in a sentence.
Funder
DOE Office of Basic Energy Sciences
NSF MRSEC
SHAR-CNET
Google Quantum Research Award
NSF HDR-DIRSE
Compute Canada
NSERC
Canadian Institute for Advanced Research
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献