Role of multifidelity data in sequential active learning materials discovery campaigns: case study of electronic bandgap

Author:

Jacobs RyanORCID,Goins Philip E,Morgan Dane

Abstract

Abstract Materials discovery and design typically proceeds through iterative evaluation (both experimental and computational) to obtain data, generally targeting improvement of one or more properties under one or more constraints (e.g. time or budget). However, there can be great variation in the quality and cost of different data, and when they are mixed together in what we here call multifidelity data, the optimal approaches to their utilization are not established. It is therefore important to develop strategies to acquire and use multifidelity data to realize the most efficient iterative materials exploration. In this work, we assess the impact of using multifidelity data through mock demonstration of designing solar cell materials, using the electronic bandgap as the target property. We propose a new approach of using multifidelity data through leveraging machine learning models of both low- and high-fidelity data, where using predicted low-fidelity data as an input feature in the high-fidelity model can improve the impact of a multifidelity data approach. We show how tradeoffs of low- versus high-fidelity measurement cost and acquisition can impact the materials discovery process. We find that the use of multifidelity data has maximal impact on the materials discovery campaign when approximately five low-fidelity measurements per high-fidelity measurement are performed, and when the cost of low-fidelity measurements is approximately 5% or less than that of high-fidelity measurements. This work provides practical guidance and useful qualitative measures for improving materials discovery campaigns that involve multifidelity data.

Funder

Army Research Laboratory

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3