A combined modeling method for complex multi-fidelity data fusion

Author:

Tang LeiORCID,Liu FengORCID,Wu AnpingORCID,Li YuboORCID,Jiang Wanqiu,Wang QingfengORCID,Huang JunORCID

Abstract

Abstract Currently, mainstream methods for multi-fidelity data fusion have achieved great success in many fields, but they generally suffer from poor scalability. Therefore, this paper proposes a C 3 2 combination modeling method for complex multi-fidelity data fusion, devoted to solving the modeling problems with three types of multi-fidelity data fusion, and explores a general solution for any n types of multi-fidelity data fusion. Different from the traditional direct modeling method—Multi-Fidelity Deep Neural Network (MFDNN)—the C 3 2 method is an indirect modeling method. The experimental results on three representative benchmark functions and the prediction tasks of SG6043 airfoil aerodynamic performance show that C 3 2 combination modeling has the following advantages: (1) It can quickly establish the mapping relationship between high, medium, and low fidelity data. (2) It can effectively solve the data imbalance problem in multi-fidelity modeling. (3) Compared with MFDNN, it has stronger noise resistance and higher prediction accuracy. Additionally, this paper discusses the scalability problem of the C n 2 method when n = 4 and n = 5, providing a reference for further research on the combined modeling method.

Publisher

IOP Publishing

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3