Solving deep-learning density functional theory via variational autoencoders

Author:

Costa EmanueleORCID,Scriva GiuseppeORCID,Pilati SebastianoORCID

Abstract

Abstract In recent years, machine learning models, chiefly deep neural networks, have revealed suited to learn accurate energy-density functionals from data. However, problematic instabilities have been shown to occur in the search of ground-state density profiles via energy minimization. Indeed, any small noise can lead astray from realistic profiles, causing the failure of the learned functional and, hence, strong violations of the variational property. In this article, we employ variational autoencoders (VAEs) to build a compressed, flexible, and regular representation of the ground-state density profiles of various quantum models. Performing energy minimization in this compressed space allows us to avoid both numerical instabilities and variational biases due to excessive constraints. Our tests are performed on one-dimensional single-particle models from the literature in the field and, notably, on a three-dimensional disordered potential. In all cases, the ground-state energies are estimated with errors below the chemical accuracy and the density profiles are accurately reproduced without numerical artifacts. Furthermore, we show that it is possible to perform transfer learning, applying pre-trained VAEs to different potentials.

Funder

Ministero dell’Università e della Ricerca

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

Publisher

IOP Publishing

Reference50 articles.

1. Inhomogeneous electron gas;Hohenberg;Phys. Rev.,1964

2. Perspective on density functional theory;Burke;J. Chem. Phys.,2012

3. Challenges for density functional theory;Cohen;Chem. Rev.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3