Data-driven Lie point symmetry detection for continuous dynamical systems

Author:

Gabel AlexORCID,Quax RickORCID,Gavves EfstratiosORCID

Abstract

Abstract Symmetry detection, the task of discovering the underlying symmetries of a given dataset, has been gaining popularity in the machine learning community, particularly in science and engineering applications. Most previous works focus on detecting ‘canonical’ symmetries such as translation, scaling, and rotation, and cast the task as a modeling problem involving complex inductive biases and architecture design of neural networks. We challenge these assumptions and propose that instead of constructing biases, we can learn to detect symmetries from raw data without prior knowledge. The approach presented in this paper provides a flexible way to scale up the detection procedure to non-canonical symmetries, and has the potential to detect both known and unknown symmetries alike. Concretely, we focus on predicting the generators of Lie point symmetries of partial differential equations, more specifically, evolutionary equations for ease of data generation. Our results demonstrate that well-established neural network architectures are capable of recognizing symmetry generators, even in unseen dynamical systems. These findings have the potential to make non-canonical symmetries more accessible to applications, including model selection, sparse identification, and data interpretability.

Funder

Universiteit van Amsterdam

Publisher

IOP Publishing

Reference27 articles.

1. Learning Lie groups for invariant visual perception;Rao,1998

2. An unsupervised algorithm for learning Lie group transformations;Sohl-Dickstein,2010

3. Learning the irreducible representations of commutative Lie groups;Cohen,2014

4. Automatic symmetry discovery with Lie algebra convolutional network;Dehmamy,2021

5. Detecting symmetries with neural networks;Krippendorf,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3