Abstract
Abstract
Computational tools encompassing integrated molecular prediction, analysis, and generation are key for molecular design in a variety of critical applications. In this work, we develop a workflow for molecular analysis (MOLAN) that integrates an ensemble of supervised and unsupervised machine learning techniques to analyze molecular data sets. The MOLAN workflow combines molecular featurization, clustering algorithms, uncertainty analysis, low-bias dataset construction, high-performance regression models, graph-based molecular embeddings and attribution, and a semi-supervised variational autoencoder based on the novel SELFIES representation to enable molecular design. We demonstrate the utility of the MOLAN workflow in the context of a challenging multi-molecule property prediction problem: the determination of melting points solely from single molecule structure. This application serves as a case study for how to employ the MOLAN workflow in the context of molecular property prediction.
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献