Abstract
Abstract
Representation learning over graph networks has recently gained popularity, with many models showing promising results. However, several challenges remain: (1) most methods are designed for static or discrete-time dynamic graphs; (2) existing continuous-time dynamic graph algorithms focus on a single evolving perspective; and (3) many continuous-time dynamic graph approaches necessitate numerous temporal neighbors to capture long-term dependencies. In response, this paper introduces a Multi-Perspective Feedback-Attention Coupling (MPFA) model. MPFA incorporates information from both evolving and original perspectives to effectively learn the complex dynamics of dynamic graph evolution processes. The evolving perspective considers the current state of historical interaction events of nodes and uses a temporal attention module to aggregate current state information. This perspective also makes it possible to capture long-term dependencies of nodes using a small number of temporal neighbors. Meanwhile, the original perspective utilizes a feedback attention module with growth characteristic coefficients to aggregate the original state information of node interactions. Experimental results on one dataset organized by ourselves and seven public datasets validate the effectiveness and competitiveness of our proposed model.
Funder
National Natural Science Foundation of China
Guangxi Science and Technology Base and Talent Special Project