Multi-perspective feedback-attention coupling model for continuous-time dynamic graphs

Author:

Zhu Xiaobo,Wu YanORCID,Che Jin,Wang Chao,Wang Liying,Chen Zhanheng

Abstract

Abstract Representation learning over graph networks has recently gained popularity, with many models showing promising results. However, several challenges remain: (1) most methods are designed for static or discrete-time dynamic graphs; (2) existing continuous-time dynamic graph algorithms focus on a single evolving perspective; and (3) many continuous-time dynamic graph approaches necessitate numerous temporal neighbors to capture long-term dependencies. In response, this paper introduces a Multi-Perspective Feedback-Attention Coupling (MPFA) model. MPFA incorporates information from both evolving and original perspectives to effectively learn the complex dynamics of dynamic graph evolution processes. The evolving perspective considers the current state of historical interaction events of nodes and uses a temporal attention module to aggregate current state information. This perspective also makes it possible to capture long-term dependencies of nodes using a small number of temporal neighbors. Meanwhile, the original perspective utilizes a feedback attention module with growth characteristic coefficients to aggregate the original state information of node interactions. Experimental results on one dataset organized by ourselves and seven public datasets validate the effectiveness and competitiveness of our proposed model.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Base and Talent Special Project

Publisher

IOP Publishing

Reference39 articles.

1. node2vec: Scalable feature learning for networks;Grover,2016

2. Link prediction based on graph neural networks;Zhang;Proc. of the 32nd Int. Conf. on Neural Information Processing Systems vol 31,2018

3. Distributed representations of subgraphs;Adhikari,2017

4. Spatio-temporal graph structure learning for traffic forecasting;Zhang,2020

5. Dualgnn: Dual graph neural network for multimedia recommendation;Wang;IEEE Trans. on Multimedia,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3