Neural network Gaussian processes as efficient models of potential energy surfaces for polyatomic molecules

Author:

Dai JORCID,Krems R V

Abstract

Abstract Kernel models of potential energy surfaces (PESs) for polyatomic molecules are often restricted by a specific choice of the kernel function. This can be avoided by optimizing the complexity of the kernel function. For regression problems with very expensive data, the functional form of the model kernels can be optimized in the Gaussian process (GP) setting through compositional function search guided by the Bayesian information criterion. However, the compositional kernel search is computationally demanding and relies on greedy strategies, which may yield sub-optimal kernels. An alternative strategy of increasing complexity of GP kernels treats a GP as a Bayesian neural network (NN) with a variable number of hidden layers, which yields NNGP models. Here, we present a direct comparison of GP models with composite kernels and NNGP models for applications aiming at the construction of global PES for polyatomic molecules. We show that NNGP models of PES can be trained much more efficiently and yield better generalization accuracy without relying on any specific form of the kernel function. We illustrate that NNGP models trained by distributions of energy points at low energies produce accurate predictions of PES at high energies. We also illustrate that NNGP models can extrapolate in the input variable space by building the free energy surface of the Heisenberg model trained in the paramagnetic phase and validated in the ferromagnetic phase. By construction, composite kernels yield more accurate models than kernels with a fixed functional form. Therefore, by illustrating that NNGP models outperform GP models with composite kernels, our work suggests that NNGP models should be a preferred choice of kernel models for PES.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3