Predictive models for inorganic materials thermoelectric properties with machine learning

Author:

Don-tsa Delchere,Mohou Messanh Agbeko,Amouzouvi Kossi,Maaza MalikORCID,Beltako KatawouraORCID

Abstract

Abstract The high computational demand of the Density Functional Theory (DFT) based method for screening new materials properties remains a strong limitation to the development of clean and renewable energy technologies essential to transition to a carbon-neutral environment in the coming decades. Machine Learning comes into play with its innate capacity to handle huge amounts of data and high-dimensional statistical analysis. In this paper, supervised Machine Learning models together with data analysis on existing datasets obtained from a high-throughput calculation using Density Functional Theory are used to predict the Seebeck coefficient, electrical conductivity, and power factor of inorganic compounds. The analysis revealed a strong dependence of the thermoelectric properties on the effective masses, we also proposed a machine learning model for the prediction of highly performing thermoelectric materials which reached an efficiency of 95 percent. The analyzed data and developed model can significantly contribute to innovation by providing a faster and more accurate prediction of thermoelectric properties, thereby, facilitating the discovery of highly efficient thermoelectric materials.

Funder

European Union

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3