Feature space reduction method for ultrahigh-dimensional, multiclass data: random forest-based multiround screening (RFMS)

Author:

Hanczár GergelyORCID,Stippinger MarcellORCID,Hanák DávidORCID,Kurbucz Marcell TORCID,Törteli Olivér MORCID,Chripkó ÁgnesORCID,Somogyvári ZoltánORCID

Abstract

Abstract In recent years, several screening methods have been published for ultrahigh-dimensional data that contain hundreds of thousands of features, many of which are irrelevant or redundant. However, most of these methods cannot handle data with thousands of classes. Prediction models built to authenticate users based on multichannel biometric data result in this type of problem. In this study, we present a novel method known as random forest-based multiround screening (RFMS) that can be effectively applied under such circumstances. The proposed algorithm divides the feature space into small subsets and executes a series of partial model builds. These partial models are used to implement tournament-based sorting and the selection of features based on their importance. This algorithm successfully filters irrelevant features and also discovers binary and higher-order feature interactions. To benchmark RFMS, a synthetic biometric feature space generator known as BiometricBlender is employed. Based on the results, the RFMS is on par with industry-standard feature screening methods, while simultaneously possessing many advantages over them.

Funder

Hungarian Scientific Research Fund

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3