Artificial neural networks exploiting point cloud data for fragmented solid objects classification

Author:

Baiocchi AORCID,Giagu SORCID,Napoli C,Serra MORCID,Nardelli PORCID,Valleriani M

Abstract

Abstract This paper presents a novel approach for fragmented solid object classification exploiting neural networks based on point clouds. This work is the initial step of a project in collaboration with the Institution of ‘Ente Parco Archeologico del Colosseo’ in Rome, which aims to reconstruct ancient artifacts from their fragments. We built from scratch a synthetic dataset (DS) of fragments of different 3D objects including aging effects. We used this DS to train deep learning models for the task of classifying internal and external fragments. As model architectures, we adopted PointNet and dynamical graph convolutional neural network, which take as input a point cloud representing the spatial geometry of a fragment, and we optimized model performance by adding additional features sensitive to local geometry characteristics. We tested the approach by performing several experiments to check the robustness and generalization capabilities of the models. Finally, we test the models on a real case using a 3D scan of artifacts preserved in different museums, artificially fragmented, obtaining good performance.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference27 articles.

1. PointNet: deep learning on point sets for 3D classification and segmentation;Charles,2017

2. Dynamic graph CNN for learning on point clouds;Wang;ACM Trans. Graph.,2019

3. Color classification of archaeological fragments;Kampel,2000

4. Archaeological fragment reconstruction using curve-matching;McBride,2003

5. Classification of archaeological ceramic fragments using texture and color descriptors;Smith,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3