Abstract
Abstract
Machine-learning force fields have been increasingly employed in order to extend the possibility of current first-principles calculations. However, the transferability of the obtained potential cannot always be guaranteed in situations that are outside the original database. To study such limitation, we examined the very difficult case of the interactions in gold–iron nanoparticles. For the machine-learning potential, we employed a linearized formulation that is parameterized using a penalizing regression scheme which allows us to control the complexity of the obtained potential. We showed that while having a more complex potential allows for a better agreement with the training database, it can also lead to overfitting issues and a lower accuracy in untrained systems.
Funder
Fonds De La Recherche Scientifique - FNRS
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献