GPU coprocessors as a service for deep learning inference in high energy physics

Author:

Krupa JeffreyORCID,Lin KelvinORCID,Acosta Flechas MariaORCID,Dinsmore JackORCID,Duarte JavierORCID,Harris PhilipORCID,Hauck ScottORCID,Holzman BurtORCID,Hsu Shih-ChiehORCID,Klijnsma ThomasORCID,Liu Mia,Pedro KevinORCID,Rankin DylanORCID,Suaysom Natchanon,Trahms MattORCID,Tran NhanORCID

Abstract

Abstract In the next decade, the demands for computing in large scientific experiments are expected to grow tremendously. During the same time period, CPU performance increases will be limited. At the CERN Large Hadron Collider (LHC), these two issues will confront one another as the collider is upgraded for high luminosity running. Alternative processors such as graphics processing units (GPUs) can resolve this confrontation provided that algorithms can be sufficiently accelerated. In many cases, algorithmic speedups are found to be largest through the adoption of deep learning algorithms. We present a comprehensive exploration of the use of GPU-based hardware acceleration for deep learning inference within the data reconstruction workflow of high energy physics. We present several realistic examples and discuss a strategy for the seamless integration of coprocessors so that the LHC can maintain, if not exceed, its current performance throughout its running.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference97 articles.

1. LHC Machine

2. LHC Run-2 and future prospects;Boyd,2020

3. LHC highlights and prospects;Gerber,2019

4. Searching for long-lived particles beyond the standard model at the large Hadron collider;Alimena;J. Phys. G,2020

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3