Site2Vec: a reference frame invariant algorithm for vector embedding of protein–ligand binding sites

Author:

Bhadra ArnabORCID,Yeturu KalidasORCID

Abstract

Abstract Protein–ligand interactions are one of the fundamental types of molecular interactions in living systems. Ligands are small molecules that interact with protein molecules at specific regions on their surfaces called binding sites. Binding sites would also determine ADMET properties of a drug molecule. Tasks such as assessment of protein functional similarity and detection of side effects of drugs need identification of similar binding sites of disparate proteins across diverse pathways. To this end, methods for computing similarities between binding sites are still evolving and is an active area of research even today. Machine learning methods for similarity assessment require feature descriptors of binding sites. Traditional methods based on hand engineered motifs and atomic configurations are not scalable across several thousands of sites. In this regard, deep neural network algorithms are now deployed which can capture very complex input feature space. However, one fundamental challenge in applying deep learning to structures of binding sites is the input representation and the reference frame. We report here a novel algorithm, Site2Vec, that derives reference frame invariant vector embedding of a protein–ligand binding site. The method is based on pairwise distances between representative points and chemical compositions in terms of constituent amino acids of a site. The vector embedding serves as a locality sensitive hash function for proximity queries and determining similar sites. The method has been the top performer with more than 95% quality scores in extensive benchmarking studies carried over 10 data sets and against 23 other site comparison methods in the field. The algorithm serves for high throughput processing and has been evaluated for stability with respect to reference frame shifts, coordinate perturbations and residue mutations. We also provide the method as a standalone executable and a web service hosted at (http://services.iittp.ac.in/bioinfo/home).

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3