Abstract
Abstract
Currently, quantum hardware is restrained by noises and qubit numbers. Thus, a quantum virtual machine (QVM) that simulates operations of a quantum computer on classical computers is a vital tool for developing and testing quantum algorithms before deploying them on real quantum computers. Various variational quantum algorithms (VQAs) have been proposed and tested on QVMs to surpass the limitations of quantum hardware. Our goal is to exploit further the VQAs towards practical applications of quantum machine learning (QML) using state-of-the-art quantum computers. In this paper, we first introduce a QVM named Qsun, whose operation is underlined by quantum state wavefunctions. The platform provides native tools supporting VQAs. Especially using the parameter-shift rule, we implement quantum differentiable programming essential for gradient-based optimization. We then report two tests representative of QML: quantum linear regression and quantum neural network.
Funder
Japan Society for the Promotion of Science
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献