Triggering dark showers with conditional dual auto-encoders

Author:

Anzalone LucaORCID,Singh Chhibra SimranjitORCID,Maier BenediktORCID,Chernyavskaya NadezdaORCID,Pierini MaurizioORCID

Abstract

Abstract We present a family of conditional dual auto-encoders (CoDAEs) for generic and model-independent new physics searches at colliders. New physics signals, which arise from new types of particles and interactions, are considered in our study as anomalies causing deviations in data with respect to expected background events. In this work, we perform a normal-only anomaly detection, which employs only background samples, to search for manifestations of a dark version of strong force applying (variational) auto-encoders on raw detector images, which are large and highly sparse, without leveraging any physics-based pre-processing or strong assumption on the signals. The proposed CoDAE has a dual-encoder design, which is general and can learn an auxiliary yet compact latent space through spatial conditioning, showing a neat improvement over competitive physics-based baselines and related approaches, therefore also reducing the gap with fully supervised models. It is the first time an unsupervised model is shown to exhibit excellent discrimination against multiple dark shower models, illustrating the suitability of this method as an accurate, fast, model-independent algorithm to deploy, e.g. in the real-time event triggering systems of large hadron collider experiments such as ATLAS and CMS.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3