Variational Quantum Reinforcement Learning via Evolutionary Optimization

Author:

Chen Samuel Yen-ChiORCID,Huang Chih-Min,Hsing Chia-Wei,Goan Hsi-ShengORCID,Kao Ying-JerORCID

Abstract

Abstract Recent advance in classical reinforcement learning (RL) and quantum computation (QC) points to a promising direction of performing RL on a quantum computer. However, potential applications in quantum RL are limited by the number of qubits available in modern quantum devices. Here we present two frameworks of deep quantum RL tasks using a gradient-free evolution optimization: First, we apply the amplitude encoding scheme to the Cart-Pole problem, where we demonstrate the quantum advantage of parameter saving using the amplitude encoding; Second, we propose a hybrid framework where the quantum RL agents are equipped with a hybrid tensor network-variational quantum circuit (TN-VQC) architecture to handle inputs of dimensions exceeding the number of qubits. This allows us to perform quantum RL on the MiniGrid environment with 147-dimensional inputs. The hybrid TN-VQC architecture provides a natural way to perform efficient compression of the input dimension, enabling further quantum RL applications on noisy intermediate-scale quantum devices.

Funder

National Taiwan University

Brookhaven National Laboratory

High Energy Physics

U.S. Air Force

Ministry of Science and Technology

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variational Anonymous Quantum Sensing;IEEE Journal on Selected Areas in Communications;2024-09

2. Quantum Architecture Search with Neural Predictor Based on Graph Measures;Advanced Quantum Technologies;2024-08-12

3. Using an Evolutionary Algorithm to Create (MAX)-3SAT QUBOs;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

4. Federated quantum long short-term memory (FedQLSTM);Quantum Machine Intelligence;2024-07-09

5. A Study on Optimization Techniques for Variational Quantum Circuits in Reinforcement Learning;2024 IEEE International Conference on Quantum Software (QSW);2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3