Prediction of molecular field points using SE(3)-transformer model

Author:

Hinz Florian B,Mahmoud Amr H,Lill Markus AORCID

Abstract

Abstract Due to their computational efficiency, 2D fingerprints are typically used in similarity-based high-content screening. The interaction of a ligand with its target protein, however, relies on its physicochemical interactions in 3D space. Thus, ligands with different 2D scaffolds can bind to the same protein if these ligands share similar interaction patterns. Molecular fields can represent those interaction profiles. For efficiency, the extrema of those molecular fields, named field points, are used to quantify the ligand similarity in 3D. The calculation of field points involves the evaluation of the interaction energy between the ligand and a small probe shifted on a fine grid representing the molecular surface. These calculations are computationally prohibitive for large datasets of ligands, making field point representations of molecules intractable for high-content screening. Here, we overcome this roadblock by one-shot prediction of field points using generative neural networks based on the molecular structure alone. Field points are predicted by training an SE(3)-Transformer, an equivariant, attention-based graph neural network architecture, on a large set of ligands with field point data. Resulting data demonstrates the feasibility of this approach to precisely generate negative, positive and hydrophobic field points within 0.5 Å of the ground truth for a diverse set of drug-like molecules.

Funder

Swiss National Science Foundation

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference13 articles.

1. Novel lead structures for p38 map kinase via fieldscreen virtual screening;Cheeseright;J. Med. Chem.,2009

2. FieldScreen: virtual screening using molecular fields. Application to the DUD data set;Cheeseright;J. Chem. Inf. Model.,2008

3. Molecular field extrema as descriptors of biological activity: definition and validation;Cheeseright;J. Chem. Inf. Model.,2006

4. Group equivariant convolutional networks;Cohen,2016

5. SE(3)-transformers: 3D roto-translation equivariant attention networks;Fuchs,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3