Investigating the ability of PINNs to solve Burgers’ PDE near finite-time blowup

Author:

Kumar DibyakantiORCID,Mukherjee AnirbitORCID

Abstract

Abstract Physics Informed Neural Networks (PINNs) have been achieving ever newer feats of solving complicated Partial Differential Equations (PDEs) numerically while offering an attractive trade-off between accuracy and speed of inference. A particularly challenging aspect of PDEs is that there exist simple PDEs which can evolve into singular solutions in finite time starting from smooth initial conditions. In recent times some striking experiments have suggested that PINNs might be good at even detecting such finite-time blow-ups. In this work, we embark on a program to investigate this stability of PINNs from a rigorous theoretical viewpoint. Firstly, we derive error bounds for PINNs for Burgers’ PDE, in arbitrary dimensions, under conditions that allow for a finite-time blow-up. Our bounds give a theoretical justification for the functional regularization terms that have been reported to be useful for training PINNs near finite-time blow-up. Then we demonstrate via experiments that our bounds are significantly correlated to the 2 -distance of the neurally found surrogate from the true blow-up solution, when computed on sequences of PDEs that are getting increasingly close to a blow-up.

Publisher

IOP Publishing

Reference73 articles.

1. Using computational fluid dynamics for aerodynamics–a critical assessment;Jameson,2002

2. Artificial neural networks for solving ordinary and partial differential equations

3. Royal signals and radar establishment malvern (United Kingdom) RSRE-MEMO-4148;Broomhead,1988

4. Physics-informed machine learning

5. Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3