Abstract
Abstract
To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.
Funder
ETH Foundation
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Austrian Science Fund
Austrian Academy of Sciences
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
National Science Foundation
Centro Svizzero di Calcolo Scientifico
Gordon and Betty Moore Foundation
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献