Hadrons, better, faster, stronger

Author:

Buhmann Erik,Diefenbacher SaschaORCID,Hundhausen Daniel,Kasieczka Gregor,Korcari William,Eren Engin,Gaede Frank,Krüger Katja,McKeown Peter,Rustige Lennart

Abstract

Abstract Motivated by the computational limitations of simulating interactions of particles in highly-granular detectors, there exists a concerted effort to build fast and exact machine-learning-based shower simulators. This work reports progress on two important fronts. First, the previously investigated Wasserstein generative adversarial network and bounded information bottleneck autoencoder generative models are improved and successful learning of hadronic showers initiated by charged pions in a segment of the hadronic calorimeter of the International Large Detector is demonstrated for the first time. Second, we consider how state-of-the-art reconstruction software applied to generated shower energies affects the obtainable energy response and resolution. While many challenges remain, these results constitute an important milestone in using generative models in a realistic setting.

Funder

Helmholtz Innovation Pool

Deutsche Forschungsgemeinschaft

Deutsches Elektronen-Synchrotron

Horizon 2020 Framework Programme

Bundesministerium für Bildung und Forschung

HamburgX

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference52 articles.

1. A roadmap for HEP software and computing R&D for the 2020s;Albrecht;Comput. Softw. Big Sci.,2019

2. Accelerating science with generative adversarial networks: an application to 3D particle showers in multilayer calorimeters;Paganini;Phys. Rev. Lett.,2018

3. Geant4-a simulation toolkit;Agostinelli;Nucl. Instrum. Methods Phys. Res. A,2003

4. GANplifying event samples;Butter,2020

5. The ATLAS fast Monte Carlo production chain project;Jansky;J. Phys. Conf. Ser.,2015

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3