Abstract
Abstract
Motivated by the computational limitations of simulating interactions of particles in highly-granular detectors, there exists a concerted effort to build fast and exact machine-learning-based shower simulators. This work reports progress on two important fronts. First, the previously investigated Wasserstein generative adversarial network and bounded information bottleneck autoencoder generative models are improved and successful learning of hadronic showers initiated by charged pions in a segment of the hadronic calorimeter of the International Large Detector is demonstrated for the first time. Second, we consider how state-of-the-art reconstruction software applied to generated shower energies affects the obtainable energy response and resolution. While many challenges remain, these results constitute an important milestone in using generative models in a realistic setting.
Funder
Helmholtz Innovation Pool
Deutsche Forschungsgemeinschaft
Deutsches Elektronen-Synchrotron
Horizon 2020 Framework Programme
Bundesministerium für Bildung und Forschung
HamburgX
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献