Differentiable Earth mover’s distance for data compression at the high-luminosity LHC

Author:

Shenoy RohanORCID,Duarte JavierORCID,Herwig ChristianORCID,Hirschauer JamesORCID,Noonan DanielORCID,Pierini MaurizioORCID,Tran NhanORCID,Mantilla Suarez CristinaORCID

Abstract

Abstract The Earth mover’s distance (EMD) is a useful metric for image recognition and classification, but its usual implementations are not differentiable or too slow to be used as a loss function for training other algorithms via gradient descent. In this paper, we train a convolutional neural network (CNN) to learn a differentiable, fast approximation of the EMD and demonstrate that it can be used as a substitute for computing-intensive EMD implementations. We apply this differentiable approximation in the training of an autoencoder-inspired neural network (encoder NN) for data compression at the high-luminosity LHC at CERN The goal of this encoder NN is to compress the data while preserving the information related to the distribution of energy deposits in particle detectors. We demonstrate that the performance of our encoder NN trained using the differentiable EMD CNN surpasses that of training with loss functions based on mean squared error.

Funder

University of California, San Diego

High Energy Physics

Office of Advanced Cyberinfrastructure

Advanced Scientific Computing Research

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference45 articles.

1. The earth mover’s distance as a metric for image retrieval;Rubner;Int. J. Comput. Vis.,2000

2. Squared earth mover’s distance-based loss for training deep neural networks;Hou,2016

3. Differential earth mover’s distance with its applications to visual tracking;Zhao;IEEE Trans. Pattern Anal. Mach. Intell.,2010

4. An optimal transportation approach for nuclear structure-based pathology;Wang;IEEE Trans. Med. Imaging,2011

5. Metric space of collider events;Komiske;Phys. Rev. Lett.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HDMA-CGAN: Advancing Image Style Transfer with Deep Learning;International Journal of Pattern Recognition and Artificial Intelligence;2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3