A reinforcement learning application of a guided Monte Carlo Tree Search algorithm for beam orientation selection in radiation therapy

Author:

Sadeghnejad-Barkousaraie AzarORCID,Bohara Gyanendra,Jiang Steve,Nguyen DanORCID

Abstract

Abstract Current beam orientation optimization algorithms for radiotherapy, such as column generation (CG), are typically heuristic or greedy in nature because of the size of the combinatorial problem, which leads to suboptimal solutions. We propose a reinforcement learning strategy using a Monte Carlo Tree Search (MCTS) that can find a better beam orientation set in less time than CG. We utilize a reinforcement learning structure involving a supervised learning network to guide the MCTS and to explore the decision space of beam orientation selection problems. We previously trained a deep neural network (DNN) that takes in the patient anatomy, organ weights, and current beams, then approximates beam fitness values to indicate the next best beam to add. Here, we use this DNN to probabilistically guide the traversal of the branches of the Monte Carlo decision tree to add a new beam to the plan. To assess the feasibility of the algorithm, we used a test set of 13 prostate cancer patients, distinct from the 57 patients originally used to train and validate the DNN, to solve five-beam plans. To show the strength of the guided MCTS (GTS) compared to other search methods, we also provided the performances of Guided Search, Uniform Tree Search and Random Search algorithms. On average, GTS outperformed all the other methods. It found a better solution than CG in 237 s on average, compared to 360 s for CG, and outperformed all other methods in finding a solution with a lower objective function value in less than 1000 s. Using our GTS method, we could maintain planning target volume (PTV) coverage within 1% error similar to CG, while reducing the organ-at-risk mean dose for body, rectum, left and right femoral heads; the mean dose to bladder was 1% higher with GTS than with CG.

Funder

Foundation for the National Institutes of Health

Cancer Prevention and Research Institute of Texas

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3