Convolutional neural network analysis of x-ray diffraction data: strain profile retrieval in ion beam modified materials

Author:

Boulle AORCID,Debelle A

Abstract

Abstract This work describes a proof of concept demonstrating that convolutional neural networks (CNNs) can be used to invert x-ray diffraction (XRD) data, so as to, for instance, retrieve depth-resolved strain profiles. The determination of strain distributions in disordered materials is critical in several technological domains, such as the semiconductor industry for instance. Using numerically generated data, a dedicated CNN has been developed, optimized, and trained, with the ultimate objective of inferring spatial strain profiles on the sole basis of XRD data, without the need of a priori knowledge or human intervention. With the example ZrO2 single crystals, in which atomic disorder and strain are introduced by means of ion irradiation, we investigate the physical parameters of the disordered material that condition the performances of the CNN. Simple descriptors of the strain distribution, such as the maximum strain and the strained depth, are predicted with accuracies of 94% and 91%, respectively. The exact shape of the strain distribution is predicted with a 82% accuracy, and 76% for strain levels <2% where the amount of meaningful information in the XRD data is significantly decreased. The robustness of the CNN against the number of predicted parameters and the size of the training dataset, as well as the uniqueness of the solution in some challenging cases, are critically discussed. Finally, the potential of the CNN has been tested on real, experimental, data. Interestingly, while the CNN has not been trained to operate on experimental data, it still shows promising performances with predictions achieved in a few seconds and corresponding root-mean-square errors in the 0.12–0.17 range for a fully automated approach, vs. a 0.06–0.12 range for a classical, human-based, approach that, in turn, requires several tens of minutes to optimize the solution. While the overall accuracy of the CNN has to be improved, these results pave the way for a fully automated XRD data analysis.

Funder

French National Center for Scientific Research

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference83 articles.

1. Advances in ion beam modification of semiconductors;Elliman;Curr. Opin. Solid State Mater. Sci.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3