No-reference perceptual CT image quality assessment based on a self-supervised learning framework

Author:

Lee Wonkyeong,Cho Eunbyeol,Kim Wonjin,Choi Hyebin,Beck Kyongmin Sarah,Yoon Hyun Jung,Baek Jongduk,Choi Jang-HwanORCID

Abstract

Abstract Accurate image quality assessment (IQA) is crucial to optimize computed tomography (CT) image protocols while keeping the radiation dose as low as reasonably achievable. In the medical domain, IQA is based on how well an image provides a useful and efficient presentation necessary for physicians to make a diagnosis. Moreover, IQA results should be consistent with radiologists’ opinions on image quality, which is accepted as the gold standard for medical IQA. As such, the goals of medical IQA are greatly different from those of natural IQA. In addition, the lack of pristine reference images or radiologists’ opinions in a real-time clinical environment makes IQA challenging. Thus, no-reference IQA (NR-IQA) is more desirable in clinical settings than full-reference IQA (FR-IQA). Leveraging an innovative self-supervised training strategy for object detection models by detecting virtually inserted objects with geometrically simple forms, we propose a novel NR-IQA method, named deep detector IQA (D2IQA), that can automatically calculate the quantitative quality of CT images. Extensive experimental evaluations on clinical and anthropomorphic phantom CT images demonstrate that our D2IQA is capable of robustly computing perceptual image quality as it varies according to relative dose levels. Moreover, when considering the correlation between the evaluation results of IQA metrics and radiologists’ quality scores, our D2IQA is marginally superior to other NR-IQA metrics and even shows performance competitive with FR-IQA metrics.

Funder

Korea Medical Device Development Fund

National Research Foundation of Korea

Electronics and Telecommunications Research Institute (ETRI) grant

Technology development Program of MSS

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3