Intramolecular proton transfer reaction dynamics using machine-learned ab initio potential energy surfaces

Author:

Raghunathan ShampaORCID,Kashyap Nakirikanti Sai Ajay

Abstract

Abstract Hydrogen bonding interactions, which are central to various physicochemical processes, are investigated in the present study using ab initio-based machine learning potential energy surfaces. Abnormally strong intramolecular O–H⋯O hydrogen bonds, occurring in β-diketone enols of malonaldehyde and its derivatives, with substituents ranging from various electron-withdrawing to electron-donating functional groups, are studied. Machine learning force fields were constructed using a kernel-based force learning model employing ab initio molecular dynamics reference data. These models were used for molecular dynamics simulations at finite temperature, and dynamical properties were determined by computing proton transfer free-energy surfaces. The chemical systems studied here show progression toward barrier-less proton transfer events at an accuracy of correlated electronic structure methods. Markov state models of the conformational states indicate shorter intramolecular hydrogen bonds exhibiting higher proton transfer rates. We demonstrate how functional group substitution can modulate the strength of intramolecular hydrogen bonds by studying the thermodynamic and kinetic properties.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3