Abstract
Abstract
Uncertainty quantification by ensemble learning is explored in terms of an application known from the field of computational optical form measurements. The application requires solving a large-scale, nonlinear inverse problem. Ensemble learning is used to extend the scope of a recently developed deep learning approach for this problem in order to provide an uncertainty quantification of the solution to the inverse problem predicted by the deep learning method. By systematically inserting out-of-distribution errors as well as noisy data, the reliability of the developed uncertainty quantification is explored. Results are encouraging and the proposed application exemplifies the ability of ensemble methods to make trustworthy predictions on the basis of high-dimensional data in a real-world context.
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献