Abstract
Abstract
Astrometry—the precise measurement of positions and motions of celestial objects—has emerged as a promising avenue for characterizing the dark matter population in our Galaxy. By leveraging recent advances in simulation-based inference and neural network architectures, we introduce a novel method to search for global dark matter-induced gravitational lensing signatures in astrometric datasets. Our method based on neural likelihood-ratio estimation shows significantly enhanced sensitivity to a cold dark matter population and more favorable scaling with measurement noise compared to existing approaches based on two-point correlation statistics. We demonstrate the real-world viability of our method by showing it to be robust to non-trivial modeled as well as unmodeled noise features expected in astrometric measurements. This establishes machine learning as a powerful tool for characterizing dark matter using astrometric data.
Funder
National Science Foundation
Simons Foundation
U.S. Department of Energy
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献