High-resolution imaging in acoustic microscopy using deep learning

Author:

Banerjee Pragyan,Milind Akarte Shivam,Kumar Prakhar,Shamsuzzaman Muhammad,Butola Ankit,Agarwal Krishna,Prasad Dilip K,Melandsø Frank,Habib AnowarulORCID

Abstract

Abstract Acoustic microscopy is a cutting-edge label-free imaging technology that allows us to see the surface and interior structure of industrial and biological materials. The acoustic image is created by focusing high-frequency acoustic waves on the object and then detecting reflected signals. On the other hand, the quality of the acoustic image’s resolution is influenced by the signal-to-noise ratio, the scanning step size, and the frequency of the transducer. Deep learning-based high-resolution imaging in acoustic microscopy is proposed in this paper. To illustrate four times resolution improvement in acoustic images, five distinct models are used: SRGAN, ESRGAN, IMDN, DBPN-RES-MR64-3, and SwinIR. The trained model’s performance is assessed by calculating the PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) between the network-predicted and ground truth images. To avoid the model from over-fitting, transfer learning was incorporated during the procedure. SwinIR had average SSIM and PSNR values of 0.95 and 35, respectively. The model was also evaluated using a biological sample from Reindeer Antler, yielding an SSIM score of 0.88 and a PSNR score of 32.93. Our framework is relevant to a wide range of industrial applications, including electronic production, material micro-structure analysis, and other biological applications in general.

Funder

Cristin Project

Publisher

IOP Publishing

Reference41 articles.

1. Scanning acoustic microscopy an application for evaulating varnish layer conditions non-destructively;Brand,2008

2. Ultrasonic measurements of surface defects on flexible circuits using high-frequency focused polymer transducers;Wagle;Jpn. J. Appl. Phys.,2017

3. Scanning acoustic microscopy-a novel noninvasive method to determine tumor interstitial fluid pressure in a xenograft tumor model;Hofmann;Trans. Oncol.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3