Classifying rock types by geostatistics and random forests in tandem

Author:

Dutta Parag JyotiORCID,Emery XavierORCID

Abstract

Abstract Rock type classification is crucial for evaluating mineral resources in ore deposits and for rock mechanics. Mineral deposits are formed in a variety of rock bodies and rock types. However, the rock type identification in drill core samples is often complicated by overprinting and weathering processes. An approach to classifying rock types from drill core data relies on whole-rock geochemical assays as features. There are few studies on rock type classification from a limited number of metal grades and dry bulk density as features. The novelty in our approach is the introduction of two sets of feature variables (proxies) at sampled data points, generated by geostatistical leave-one-out cross-validation and by kriging for removing short-scale spatial variation of the measured features. We applied our proposal to a dataset from a porphyry Cu–Au deposit in Mongolia. The model performances on a testing data subset indicate that, when the training dataset is not large, the performance of the classifier (a random forest) substantially improves by incorporating the proxy features as a complement to the original measured features. At each training data point, these proxy features throw light based on the underlying spatial data correlation structure, scales of variations, sampling design, and values of features observed at neighboring points, and show the benefits of combining geostatistics with machine learning.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Agencia Nacional de Investigación y Desarrollo

Publisher

IOP Publishing

Reference37 articles.

1. Granites and metal deposits

2. International Reporting Template for the Public Reporting of Exploration Results, Mineral Resources and Mineral Reserves;CRIRSCO,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3