Towards automatic setup of 18 MeV electron beamline using machine learning

Author:

Velotti Francesco MariaORCID,Goddard Brennan,Kain Verena,Ramjiawan Rebecca,Zevi Della Porta Giovanni,Hirlaender Simon

Abstract

Abstract To improve the performance-critical stability and brightness of the electron bunch at injection into the proton-driven plasma wakefield at the AWAKE CERN experiment, automation approaches based on unsupervised machine learning (ML) were developed and deployed. Numerical optimisers were tested together with different model-free reinforcement learning (RL) agents. In order to avoid any bias, RL agents have been trained also using a completely unsupervised state encoding using auto-encoders. To aid hyper-parameter selection, a full synthetic model of the beamline was constructed using a variational auto-encoder trained to generate surrogate data from equipment settings. This paper describes the novel approaches based on deep learning and RL to aid the automatic setup of a low energy line, as the one used to deliver beam to the AWAKE facility. The results obtained with the different ML approaches, including automatic unsupervised feature extraction from images using computer vision are presented. The prospects for operational deployment and wider applicability are discussed.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference38 articles.

1. AWAKE design report: a proton-driven plasma wakefield acceleration experiment at CERN,2013

2. Acceleration of electrons in the plasma wakefield of a proton bunch;Nature,2018

3. Systematic optics studies for the commissioning of the awake electron beamline;Bracco,2019

4. Multi-Objective genetic based algorithms and experimental beam lifetime studies for the synchrotron SOLEIL storage ring;Gavalda

5. Bayesian optimisation for fast and safe parameter tuning of SWISSFEL;Kirschner,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3