Abstract
Abstract
Both experimental and computational methods for the exploration of structure, functionality, and properties of materials often necessitate the search across broad parameter spaces to discover optimal experimental conditions and regions of interest in the image space or parameter space of computational models. The direct grid search of the parameter space tends to be extremely time-consuming, leading to the development of strategies balancing exploration of unknown parameter spaces and exploitation towards required performance metrics. However, classical Bayesian optimization (BO) strategies based on the Gaussian process (GP) do not readily allow for the incorporation of the known physical behaviors or past knowledge. Here we explore a hybrid optimization/exploration algorithm created by augmenting the standard GP with a structured probabilistic model of the expected system’s behavior. This approach balances the flexibility of the non-parametric GP approach with a rigid structure of physical knowledge encoded into the parametric model. The fully Bayesian treatment of the latter allows additional control over the optimization via the selection of priors for the model parameters. The method is demonstrated for a noisy version of a standard univariate test function used to evaluate optimization algorithms and further extended to physical lattice models. This methodology is expected to be universally suitable for injecting prior knowledge in the form of physical models and past data in the BO framework.
Funder
University of Washington
Center for the Science of Synthesis Across Scales–under Award
Energy Frontier Research Centers
User Facility
U.S. Department of Energy, Office of Science
Center for Nanophase Materials Sciences
Oak Ridge National Laboratory
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献