Deep learning of interface structures from simulated 4D STEM data: cation intermixing vs. roughening ∗

Author:

Oxley M P,Yin J,Borodinov N,Somnath S,Ziatdinov M,Lupini A R,Jesse S,Vasudevan R KORCID,Kalinin S V

Abstract

Abstract Interface structures in complex oxides remain an active area of condensed matter physics research, largely enabled by recent advances in scanning transmission electron microscopy (STEM). Yet the nature of the STEM contrast in which the structure is projected along the given direction precludes separation of possible structural models. Here, we utilize deep convolutional neural networks (DCNN) trained on simulated 4D STEM datasets to predict structural descriptors of interfaces. We focus on the widely studied interface between LaAlO3 and SrTiO3, using dynamical diffraction theory and leveraging high performance computing to simulate thousands of possible 4D STEM datasets to train the DCNN to learn properties of the underlying structures on which the simulations are based. We test the DCNN on simulated data and show that it is possible (with >95% accuracy) to identify a physically rough from a chemically diffuse interface and create a DCNN regression model to predict step positions. We quantify the applicability of the model to different thicknesses and the transferability of the approach. The method shown here is general and can be applied for any inverse imaging problem where forward models are present.

Funder

Basic Energy Sciences

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3