DIM: long-tailed object detection and instance segmentation via dynamic instance memory

Author:

Chen Zhao-MinORCID,Jin XinORCID,Zhang XiaoqinORCID,Xia ChaoqunORCID,Pan ZhiyongORCID,Deng RuoxiORCID,Hu JieORCID,Chen HengORCID

Abstract

Abstract Object detection and instance segmentation have been successful on benchmarks with relatively balanced category distribution (e.g. MSCOCO). However, state-of-the-art object detection and segmentation methods still struggle to generalize on long-tailed datasets (e.g. LVIS), where a few classes (head classes) dominate the instance samples, while most classes (tailed classes) have only a few samples. To address this challenge, we propose a plug-and-play module within the Mask R-CNN framework called dynamic instance memory (DIM). Specifically, we augment Mask R-CNN with an auxiliary branch for training. It maintains a dynamic memory bank storing an instance-level prototype representation for each category, and shares the classifier with the existing instance branch. With a simple metric loss, the representations in DIM can be dynamically updated by the instance proposals in the mini-batch during training. Our DIM introduces a bias toward tailed classes to the classifier learning along with a class frequency reversed sampler, which learns generalizable representations from the original data distribution, complementing the existing instance branch. Comprehensive experiments on LVIS demonstrate the effectiveness of DIM, as well as the significant advantages of DIM over the baseline Mask R-CNN.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3