Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design

Author:

Zaverkin ViktorORCID,Kästner JohannesORCID

Abstract

Abstract Machine learning has been proven to have the potential to bridge the gap between the accuracy of ab initio methods and the efficiency of empirical force fields. Neural networks are one of the most frequently used approaches to construct high-dimensional potential energy surfaces. Unfortunately, they lack an inherent uncertainty estimation which is necessary for efficient and automated sampling through the chemical and conformational space to find extrapolative configurations. The identification of the latter is needed for the construction of transferable and uniformly accurate potential energy surfaces. In this paper, we propose an active learning approach that uses the estimated model’s output variance derived in the framework of the optimal experimental design. This method has several advantages compared to the established active learning approaches, e.g. Query-by-Committee, Monte Carlo dropout, feature and latent distances, in terms of the predictive power and computational efficiency. We have shown that the application of the proposed active learning scheme leads to transferable and uniformly accurate potential energy surfaces constructed using only a small fraction of data points. Additionally, it is possible to define a natural threshold value for the proposed uncertainty metric which offers the possibility to generate highly informative training data on-the-fly.

Funder

Deutsche Forschungsgemeinschaft

Studienstiftung des deutschen Volkes

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3