Mixed noise and posterior estimation with conditional deepGEM

Author:

Hagemann PaulORCID,Hertrich JohannesORCID,Casfor Maren,Heidenreich Sebastian,Steidl Gabriele

Abstract

Abstract We develop an algorithm for jointly estimating the posterior and the noise parameters in Bayesian inverse problems, which is motivated by indirect measurements and applications from nanometrology with a mixed noise model. We propose to solve the problem by an expectation maximization (EM) algorithm. Based on the current noise parameters, we learn in the E-step a conditional normalizing flow that approximates the posterior. In the M-step, we propose to find the noise parameter updates again by an EM algorithm, which has analytical formulas. We compare the training of the conditional normalizing flow with the forward and reverse Kullback–Leibler divergence, and show that our model is able to incorporate information from many measurements, unlike previous approaches.

Funder

Deutsche Forschungsgemeinschaft

European Metrology Programme for Innovation and Research

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Reference67 articles.

1. Noise flow: noise modeling with conditional normalizing flows;Abdelhamed,2019

2. WPPNets and WPPFlows: the power of wasserstein patch priors for superresolution;Altekrüger;SIAM J. Imaging Sci.,2023

3. Invertible neural networks versus MCMC for posterior reconstruction in grazing incidence x-ray fluorescence;Andrle,2021

4. The anisotropy in the optical constants of quartz crystals for soft x-rays;Andrle;J. Appl. Crystallogr.,2021

5. Annealed flow transport monte carlo;Arbel,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3