Application of autoencoders artificial neural network and principal component analysis for pattern extraction and spatial regionalization of global temperature data

Author:

Ibebuchi Chibuike ChiedozieORCID,Obarein Omon A,Abu Itohan-Osa

Abstract

Abstract Spatial regionalization is instrumental in simplifying the spatial complexity of the climate system. To identify regions of significant climate variability, pattern extraction is often required prior to spatial regionalization with a clustering algorithm. In this study, the autoencoder (AE) artificial neural network was applied to extract the inherent patterns of global temperature data (from 1901 to 2021). Subsequently, Fuzzy C-means clustering was applied to the extracted patterns to classify the global temperature regions. Our analysis involved comparing AE-based and principal component analysis (PCA)-based clustering results to assess consistency. We determined the number of clusters by examining the average percentage decrease in Fuzzy Partition Coefficient (FPC) and its 95% confidence interval, seeking a balance between obtaining a high FPC and avoiding over-segmentation. This approach suggested that for a more general model, four clusters is reasonable. The Adjusted Rand Index between the AE-based and PCA-based clusters is 0.75, indicating that the AE-based and PCA-based clusters have considerable overlap. The observed difference between the AE-based clusters and PCA-based clusters is suggested to be associated with AE’s capability to learn and extract complex non-linear patterns, and this attribute, for example, enabled the clustering algorithm to accurately detect the Himalayas region as the ‘third pole’ with similar temperature characteristics as the polar regions. Finally, when the analysis period is divided into two (1901–1960 and 1961–2021), the Adjusted Rand Index between the two clusters is 0.96 which suggests that historical climate change has not significantly affected the defined temperature regions over the two periods. In essence, this study indicates both AE’s potential to enhance our understanding of climate variability and reveals the stability of the historical temperature regions.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3