Extracting electron scattering cross sections from swarm data using deep neural networks

Author:

Jetly VishrutORCID,Chaudhury BhaskarORCID

Abstract

Abstract Electron-neutral scattering cross sections are fundamental quantities in simulations of low temperature plasmas used for many technological applications today. From these microscopic cross sections, several macro-scale quantities (called ‘swarm’ parameters) can be calculated. However, measurements as well as theoretical calculations of cross sections are challenging. Since the 1960s, researchers have attempted to solve the inverse swarm problem of obtaining cross sections from swarm data; but the solutions are not necessarily unique. To address these issues, we examine the use of deep learning models which are trained using the previous determinations of elastic momentum transfer, ionization and excitation cross sections for different gases available on the LXCat website and their corresponding swarm parameters calculated using the BOLSIG+ solver for the numerical solution of the Boltzmann equation for electrons in weakly ionized gases. We implement artificial neural network (ANN), convolutional neural network (CNN) and densely connected convolutional network (DenseNet) for this investigation. To the best of our knowledge, there is no study exploring the use of CNN and DenseNet for the inverse swarm problem. We test the validity of predictions by all these trained networks for a broad range of gas species and we deduce that DenseNet effectively extracts both long and short term features from the swarm data and hence, it predicts cross sections with significantly higher accuracy compared to ANN. Further, we apply Monte Carlo dropout as Bayesian approximation to estimate the probability distribution of the cross sections to determine all plausible solutions of this inverse problem.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference48 articles.

1. The 2012 plasma roadmap;Samukawa;J. Phys. D: Appl. Phys.,2012

2. The 2017 plasma roadmap: low temperature plasma science and technology;Adamovich;J. Phys. D: Appl. Phys.,2017

3. Special issue: plasma and agriculture;Gherardi;Plasma Process. Polym.,2018

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3