Experimental dataset investigation of deep recurrent optical flow learning for particle image velocimetry: flow past a circular cylinder

Author:

Anjaneya Reddy YuvarajendraORCID,Wahl Joel,Sjödahl Mikael

Abstract

Abstract Current optical flow-based neural networks for particle image velocimetry (PIV) are largely trained on synthetic datasets emulating real-world scenarios. While synthetic datasets provide greater control and variation than what can be achieved using experimental datasets for supervised learning, it requires a deeper understanding of how or what factors dictate the learning behaviors of deep neural networks for PIV. In this study, we investigate the performance of the recurrent all-pairs field transforms-PIV (RAFTs-PIV) network, the current state-of-the-art deep learning architecture for PIV, by testing it on unseen experimentally generated datasets. The results from RAFT-PIV are compared with a conventional cross-correlation-based method, Adaptive PIV. The experimental PIV datasets were generated for a typical scenario of flow past a circular cylinder in a rectangular channel. These test datasets encompassed variations in particle diameters, particle seeding densities, and flow speeds, all falling within the parameter range used for training RAFT-PIV. We also explore how different image pre-processing techniques can impact and potentially enhance the performance of RAFT-PIV on real-world datasets. Thorough testing with real-world experimental PIV datasets reveals the resilience of the optical flow-based method’s variations to PIV hyperparameters, in contrast to the conventional PIV technique. The ensemble-averaged root mean squared errors between the RAFT-PIV and Adaptive PIV estimations generally range between 0.5–2 (px) and show a slight reduction as particle densities increase or Reynolds numbers decrease. Furthermore, findings indicate that employing image pre-processing techniques to enhance input particle image quality does not improve RAFT-PIV predictions; instead, it incurs higher computational costs and impacts estimations of small-scale structures.

Publisher

IOP Publishing

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3