Abstract
Abstract
This paper proposes a resistive humidity sensor that uses a carbon-black and polyvinyl alcohol composites thin film, fabricated with a unique film coating method for thinner thickness and higher sensitivity. Improving the sensitivity of sensing films is still of great importance in the research field of gas sensors. The humidity sensor devices with thin composite film and microelectrode structure are fabricated on the glass substrate for a low cost and a simple fabrication process. The sensor gives a rapid response for humidity levels from 10.9% relative humidity (RH) to 73.7% RH, and the response time is about 5.77 s. Experimental results reveal that the sensor has good sensitivity, reproducibility, fast reaction time, and wide range. In addition to humidity, the sensor also responds well to gases such as ethanol. The proposed gas sensor in this paper can be applied to the other combinations of polymers and nanoparticles to form new gas sensors, which have the potential to be used as a gas sensor array for detecting the composition of complex gases such as volatile organic components.
Funder
Beijing Smart-chip Microelectronics Technology Co., Ltd
Research and Development Program of China
The National Natural Science Foundation of China
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献