Abstract
Abstract
Under variable working conditions, a problem arises, which is that it is difficult to obtain enough labeled data; to address this problem, an adaptive transfer autoencoder (ATAE) is established to diagnose faults in rotating machinery. First, a data adaptation module, which calculates the maximum mean discrepancy for the network hidden-layer data in reproducing kernel Hilbert space, is introduced to the autoencoder network, thus making the classification model operate under variable working conditions. Variation particle-swarm optimization is then invoked to optimize the data adaptation parameters. Finally, the k-nearest neighbors algorithm, as the classification layer of the network, identifies the state of health of the rotating machinery. The capabilities of the intelligent fault-diagnosis network are verified using vibration signals from a bearing test rig and a gearbox test rig. The experimental results suggest that, compared with state-of-the-art diagnosis methods, the proposed ATAE network can significantly boost diagnostic performance in the absence of target vibration signal labels.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
National Key Research and Development Program
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献