Robust transfer subspace learning based on low-rank and sparse representation for bearing fault diagnosis

Author:

Yu Fuchao,Xiu XianchaoORCID,Li Xinrong,Liu Jingjing

Abstract

Abstract With the development of industrial intelligence, data-driven fault diagnosis plays an important role in prognostics and health management. However, there is usually a large amount of unlabeled data from different working conditions, making cross-domain fault diagnosis unstable and inflexible. To deal with this issue, we propose two novel transfer subspace learning methods based on the low-rank sparse representation (LRSR), called LRSR-G and LRSR-R. Specifically, LRSR-G integrates an additional matrix with LRSR to characterize the Gaussian noise for robustness, as well as capture global and local structures. Furthermore, LRSR-R adaptively learns the label matrix from samples instead of using the binary labeling matrix in LRSR-G, thus providing the possibility to improve the flexibility. In addition, we develop two efficient algorithms using the alternating direction method of multipliers to solve the proposed LRSR-G and LRSR-R. Extensive experiments are conducted on the Case Western Reserve University dataset and Jiangnan University (JNU) dataset. The results show that the proposed LRSR-G and LRSR-R perform better than the existing methods, while LRSR-R has more potential in cross-domain fault diagnosis tasks.

Funder

Innovation Program of Shanghai Municipal Education Commission

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3